Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors.
نویسندگان
چکیده
We report the controlled synthesis of axial modulation-doped p-type/intrinsic/n-type (p-i-n) silicon nanowires with uniform diameters and single-crystal structures. The p-i-n nanowires were grown in three sequential steps: in the presence of diborane for the p-type region, in the absence of chemical dopant sources for the middle segment, and in the presence of phosphine for the n-type region. The p-i-n nanowires were structurally characterized by transmission electron microscopy, and the spatially resolved electrical properties of individual nanowires were determined by electrostatic force and scanning gate microscopies. Temperature-dependent current-voltage measurements recorded from individual p-i-n devices show an increase in the breakdown voltage with temperature, characteristic of band-to-band impact ionization, or avalanche breakdown. Spatially resolved photocurrent measurements show that the largest photocurrent is generated at the intrinsic region located between the electrode contacts, with multiplication factors in excess of ca. 30, and demonstrate that single p-i-n nanowires function as avalanche photodiodes. Electron- and hole-initiated avalanche gain measurements performed by localized photoexcitation of the p-type and n-type regions yield multiplication factors of ca. 100 and 20, respectively. These results demonstrate the significant potential of single p-i-n nanowires as nanoscale avalanche photodetectors and open possible opportunities for studying impact ionization of electrons and holes within quasi-one-dimensional semiconductor systems.
منابع مشابه
Atomic scale investigation of silicon nanowires and nanoclusters
In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in...
متن کاملFunctional nanoscale electronic devices assembled using silicon nanowire building blocks.
Because semiconductor nanowires can transport electrons and holes, they could function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. Boron- and phosphorous-doped silicon nanowires were used as building blocks to assemble three types of semiconductor nanodevices. Passive diode structures consisting of crossed p- and n-type ...
متن کاملW18O49 Nanowires as Ultraviolet Photodetector
Photodetectors in a configuration of field effect transistor were fabricated based on individual W18O49 nanowires. Evaluation of electrical transport behavior indicates that the W18O49 nanowires are n-type semiconductors. The photodetectors show high sensitivity, stability and reversibility to ultraviolet (UV) light. A high photoconductive gain of 104 was obtained, and the photoconductivity is ...
متن کاملSingle-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse.
With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 10(6) and a high sensitivity...
متن کاملElectrothermal simulation of superconducting nanowire avalanche photodetectors
Electro-thermal simulation of superconducting nanowire avalanche photodetectors Francesco Marsili, Faraz Najafi, Charles Herder, Karl K. Berggren Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2006